Ad Hoc Systems Management and Specification with Distributed Petri Nets

A new paper is accepted in the Complexity journal, where the authors are: Juan Sebastian Sosa, Paul Leger, Hiroaki Fukuda, Nicolás Cardozo (https://doi.org/10.1155/2021/6760920 – To appear). Here is the abstract:

Managing mobile ad hoc systems is a difficult task due to the high volatility of the systems’ topology. Ad hoc systems are commonly defined by means of their constituent entities and the relationships between such entities, however, a formal specification and run-time execution model is missing. The benefit of a formal specification is that it can enable reasoning about local and global system properties, for example, determining whether the system can reach a given state. We propose a Petri net-based specification and execution model to manage ad hoc distributed systems. Our model enables spontaneous communication between previously unknown system components. The model is locally equivalent to standard Petri nets, and hence could be used for the verification of properties for system snapshots static with respect to connections and disconnection, in which it is possible to analyze liveness, reachability, or conflicts. We validate the usability of our distributed ad hoc Petri net model by modeling distributable systems as described by existing distributed Petri nets approaches. Additionally, we demonstrate the applicability and usability of the proposed model in distributed ad hoc networks by implementing the communication behavior of two prototypical ad hoc network applications, disaster and crisis management, and VANETs, successfully validating the appropriate behavior of the system in each case.

Layer Activation Mechanism for Asynchronous Executions in JavaScript

A new paper is accepted in the Context-Oriented Programming workshop, where the authors are: Hiroaki Fukuda, Paul Leger, and Nicolás Cardozo (To appear). Here is the abstract:

In modern software development with JavaScript, an asynchronous execution model is often adopted to prevent freezing execution triggered by the blocking operations. JavaScript is now used in various types of applications for the Web, smartphones, and serverside due to its rich ecosystem. In such applications, programmers implement several concerns that should perform different behavior according to the current identified context. Context-Oriented Programming (COP) posits layers as an abstraction to manage such
concerns. With COP, programmers can implement context-dependent application behavior in a layer, then (de)activate such layers when the context changes, leading to a change in the system behavior. Additionally, COP offers different scoping strategies which define when and how layers should be (de)activated. The dynamic extent of layers is one of such scoping strategies, which encapsulates the duration of a layer within a block, then deactivates the layer when the block execution ends. However, applying an asynchronous execution model breaks the semantics of dynamic extent because the result of an asynchronous execution generally returns when the caller of the asynchronous execution goes through the block. Existing work proposes a variant of the dynamic extent that activates a layer for a block and its logically-connected asynchronous operations by keeping information across them. However, that proposal only supports one of three kinds of asynchronous operations used in JavaScript (MacroTask, EventTask, and MicroTask). This paper extends on the existing work to support a layer
activation mechanism with a scoping strategy that fulfills all three kinds of asynchronous operations in JavaScript. We show the benefit of our proposal through the implementation of a real-world application for smartphones
.

An Empirical Evaluation of Supervised Learning Methods for Network Malware Identification Based on Feature Selection

A new paper is accepted in the Complexity journal, where the authors are: Carlos Mazano, Claudio Meneses, Paul Leger (https://doi.org/10.1155/2021/6760920 – To appear). Here is the abstract:

Malware is a sophisticated, malicious, and sometimes unidentifiable application on the network. The classifying network traffic method using machine learning shows to perform well in detecting malware. In the literature, it is reported that this good performance can depend on a reduced set of network features. This study presents an empirical evaluation
of two statistical methods of reduction and selection of features in an Android network traffic dataset using six supervised algorithms: Naïve Bayes, Support Vector Machine, Multilayer Perceptron Neural Network, Decision Tree, Random Forest, and K-Nearest Neighbors. The Principal Component Analysis (PCA) and Logistic Regression (LR) methods with p-value were applied to select the most representative features related to the time properties of flows and features of bidirectional packets. The selected features were used to train the algorithms using binary and multiclass classification. For performance evaluation and comparison metrics, precision, recall, F-measure, accuracy, and area under the curve (AUC-ROC) were used. The empirical results show that Random Forest obtains an average accuracy of 96\% and an AUC-ROC of 0.98 in binary classification. For the case of multiclass classification, again Random Forest achieves an average accuracy of 87\% and an AUC-ROC over 95\%, exhibiting better performance than the other machine learning algorithms. In both experiments, the 13 most representative features of a mixed set of flow time properties and bidirectional network packets selected by LR were used. In the case of the other five classifiers, their results in terms of precision, recall, and accuracy, are competitive with those obtained in related works, which used a greater number of input features. Therefore, it is empirically evidenced that the proposed method for the selection of features, based on statistical techniques of reduction and extraction of attributes, allows improving the identification performance of malware traffic, discriminating it from the benign traffic of Android applications.

Modeling and simulating Chinese cross-border e-commerce: an agent-based simulation approach

A new paper has been accepted in Journal of Simulation, where the authors: Oswaldo Téran, Paul Leger, Manuela López (https://doi.org/10.1155/2021/6760920) . Here is the abstract:

Chinese cross-border e-commerce has become the largest in the world, overtaking US e-commerce and representing about 40% of total global e-commerce spending in 2018. This market is highly complex, uncertain, and poorly understood. Surveys and statistics have been used to characterise it, but new approaches are required to better understand its complexity. To address this gap, we present an agent-based model of Chinese cross-border e-commerce.
For a realistic representation of the buyers’ decision-making mechanism and some elements of their communication, including word of mouth (WOM), we use endorsements theory, and a survey is used to specify the model. The aim of the study is twofold: (1) to present an agent based simulation (ABS) model of the Chinese cross-border e-commerce market; and (2) to illustrate the potential of the model to explore future possible configurations of the market and to guide stakeholders’ decision making.


Sync/CC: Continuations and Aspects to Tame Callback Hell on the Web

Our paper that discusses about how to use continuations and aspects to tame callback hell has been recently accepted. Sync/cc is a JavaScript package (available) to remove the async/await constructs or other proposal to address callback hell. This idea was accepted in a WoS journal Q3.

Using Artificial Neural Network to Detect Fetal Alcohol Spectrum Disorder in Children

The application of Artificial Neural Networks (ANNs) to different domains become stronger everyday. In this accepted paper, we used ANNs to Detect Fetal Alcohol Spectrum Disorder in Children. The paper was accepted in high impact journal named Applied Sciences (IF = 2.458).

Abstract: Fetal alcohol spectrum disorder (FASD) is an umbrella term for children’s conditions due to their mother having consumed alcohol during pregnancy. These conditions can be mild to severe, affecting the subject’s quality of life. An earlier diagnosis of FASD is crucial for an improved quality of life of children by allowing a better inclusion in the educational system. New trends in computer-based diagnosis to detect FASD include using Machine Learning (ML) tools to detect this syndrome. However, most of these studies rely on children’s images that can be invasive and costly. Therefore, this paper presents a study that focuses on evaluating an ANN to classify children with FASD using non-invasive and more accessible data. This data used comes from a battery of tests obtained from children, including psychometric, saccade eye movement, and diffusion tensor imaging (DTI). We study the different configurations of ANN with dense layers being the psychometric data that correctly perform the best with 75\% of the outcome. The other models include a feature layer, and we used it to predict FASD using every test individually. Model obtained obtained an accuracy of 88.46% (psycometric, 74.07% (Antisaccadic), 72.24% (Prosaccadic), 88% (Memory guide saccade) and, 75% (DTI). These results suggest that the ANN approach is a competitive and efficient methodology to detect FASD. These results are an improved from Zhang’s 2019 model which used the same data with less accuracy level.

Defining SPL Scope in Small Companies

A high impact article named “A Collaborative Method for Scoping Software Product Lines: a Case Study in a Small Software Company” was accepted in indexed journal Applied Science (IF = 2.458). This work was developed with members of Colombian and Chile.  

Abstract: SPL scoping is the activity for bounding Software Product Lines (SPL), gathering heterogeneous knowledge from diverse sources. For achieving an agreement among different stakeholders, a commonalty scope must be understood and committed to. However, gathering this knowledge from stakeholders with individual interests is a complex task. This paper reports the experience of scoping the SPL of a small Colombian software company, applying and evaluating a collaborative method called CoMeS-SPL. The company was looking to develop a set of products from a product previously developed with great potential to be adapted and sold to different customers. From a collaborative relationship university–enterprise model, the research groups that developed CoMeS-SPL proposed to use it answering to the company needs for defining an organization-suitable reuse scope around its platform called CORA. Both parties joined in the scoping co-production of the first SPL of the company. This method implied that the company would perform new tasks and involve other roles different for those who are used to defining the scope of a single product. The company actors considered that they obtained a useful scope and perceived the collaboration as valuable because they shared different knowledge and perspectives. The researchers were able to provide feedback on their proposed model, identifying successes and aspects to improve. The experience allowed strengthening the ties of cooperation with the company, and new projects and consultancies are being carried out.

Undergraduate Students published a paper in INFONOR 2020

Diego Cortes and Domingo Pinto, undergraduate students that work on Pragmatics, published the paper “An Architecture for an Open Implementation of an Agent-Based Model for WOM Marketing Campaigns“. In this paper, Pragmatics’ professors like Paul Leger, Manuela López, and Ismael Figueroa also participated.

An article is accepted in Science of Computer Programming

The paper “Which Monads Haskell Developers Use: An Exploratory Study” has been accepted in Science of Computer Programming, which is a specialized journal in programming languages and software engineering.

Abstract:
Monads are a mechanism for embedding and reasoning about notions of computation such as mutable state, I/O, exceptions, and many others. Even though monads are technically language-agnostic, they are mostly associated with the Haskell language. Indeed, one could argue that the use of monads is one of the defining characteristic of the Haskell language. In practical terms, monadic programming in Haskell relies on the standard mtl package library, which provides eight-core notions of computation: identity, error, list, state, reader, writer, RWS, and continuations. Despite their widespread use, we are not aware of any empirical investigations regarding which monads are the most used by developers. In this paper we present an empirical study that covers a snapshot of available packages in the Hackage repository—covering 85135 packages and more than five million Haskell files. To the best of our knowledge this is the first large-scale analysis of Hackage with regards to monads and their usage as dependencies. Our results show that around 30.8% of the packages depend on the mtl package, whereas only 1.2% depend on alternative, yet compatible implementations. Nevertheless, usage patterns for each specific monad remain similar both for mtl and alternatives. Finally, the state monad is by far the most popular one, although all of them are used. We also report on the distribution of packages that use mtl, regarding their category and stability level.

A new journal paper: “Identifying the use of Information Systems for Micro, Small, and Medium Enterprises in La Serena and Coquimbo (Chile)”

A paper in the “business for computing” area was accepted in the journal “Revista de Investigación Aplicada en Ciencias Empresariales” (Chilean Journal – LatinIndex).

The purpose of this article is to determine gaps presented by Small businesses in the Coquimbo region in the use of SIAs. Of the total number of companies surveyed (N =106), only 14% mention that they have a tailor-made SIA, only 8% of companies use a standard one. 52% of companies use excel as software for the analysis of their relevant information; which evidences a lack of professionalization of information management, especially if 19% of them control their information manually.
The main gaps identified in the organizational field are the fear of the unknown, along with resistance to change and low knowledge regarding the SIA concept. The gap related to the financial field is the lack or absence of monetary funds to implement SIAs that allow them to advance in their digital transformation.
The SIAs go hand in hand with the evolution, improvement and greater ordering in companies, so they must be encouraged and well used. Small businesses in the Coquimbo region, together with strengthening the competences of the human team, must advance in the use of their information in an efficient way to boost their productivity.